
A Decision Support System for Pattern-Driven
Software Architecture

Siamak Farshidi1[0000−0003−3270−4398] and Slinger Jansen1,2[0000−0003−3752−2868]

1 Department of Information and Computer Science, Utrecht University, The Netherlands
2 Visiting Scientist, School of Engineering Science, LUT University, Finland

{s.farshidi, slinger.jansen}@uu.nl

Abstract. The selection process of architectural patterns is challenging for soft-
ware architects, as knowledge about patterns is scattered among a wide range of
literature. Knowledge about architectural patterns must be collected, organized,
stored, and quickly retrieved when it needs to be employed. In this tool paper,
we introduce a decision support system that uses a decision model for supporting
software architects with the pattern selection problem according to their require-
ments, including functional and quality requirements. The decision model is built
based on a technology selection framework for modeling multi-criteria decision-
making problems in software production. Twenty-four software architects in the
Netherlands have evaluated the tool. They confirm that the tool supports them
with their daily decision-making process.

Keywords: Architectural patterns; Pattern-driven software architecture; multi-
criteria decision-making; decision support system; decision model;

1 Introduction

Software architecture is fundamental for the development of a software product and
plays an indispensable role in its success or failure as software architecture deals with
the base structure, subsystems, and interactions among these subsystems [4]. Software
architecture design can be viewed as a decision-making process: software engineers
consider a set of alternative solutions that could solve a system design problem, and
select the set that is evaluated as the optimal [14].
Software architecture is the composition of a set of architectural design decisions, con-
cerns, variation points, features, and usage scenarios that address various system re-
quirements, including functional and quality requirements [2]. Each architectural de-
sign decision is made with a design rationale [6], which represents the knowledge that
provides the answers to questions about the design decision or the process followed to
make that decision.
An architectural pattern describes high-level structures and behaviors of software sys-
tems and addresses a particular recurring problem within a given context in software
architecture design [3]. Architectural patterns aim to satisfy several requirements and
help to document the architectural design decisions [1]. So that selecting architectural
patterns is a subset of architectural design decisions [22], and it is a challenging task
for software architects, as knowledge about patterns, such as their application domains

2 S. Farshidi and S. Jansen

and their interactions with quality attributes, is scattered among a wide range of litera-
ture [18]. Thus, a decision support system (DSS) is needed to support software archi-
tects with architectural pattern selection intelligently.

In this article, we present a DSS for Pattern-Driven Architecture, which assists software
architects in selecting the best fitting set of patterns. The DSS asks architects for their
requirements in terms of functional requirements and quality concerns. Accordingly,
several sets of architectural patterns are returned that match these requirements. Subse-
quently, architects can start tweaking the requirements to find the most suitable set of
patterns for their design. The DSS is based on several well-known software engineering
concepts, such as the ISO/IEC software quality models and the MoSCoW prioritization
technique. Architects will indicate their preferences using primary selections such as
‘The application must have high availability’ and ‘The application could have accessi-
bility’. Using a literature study, we have assessed how patterns perform on these quality
criteria. The DSS bundles this knowledge and provides architects with an interactive
and collaborative decision tool.

We regard building a software architecture as a decision-making process [17]: (1) Stake-
holders with their requirements are engaged. (2) Scenarios are captured. (3) Archi-
tectural patterns are identified to address requirements. (4) Potential combinations of
patterns are explored. (5) Architects evaluate the combinations of patterns (alternative
solutions). If the alternative solutions do not meed the requirements, they are reworked
and requirements revisited. (6) An architecture is drafted using the identified patterns
(alternative solutions), viewpoints, and perspectives. (7) Different architectural alterna-
tives for refining the draft are explored, and architectural decisions are made to select
among them. (8) The architecture is evaluated with stakeholders. Finally, if the archi-
tecture does not fulfill stakeholder requirements, the architecture design is reworked
and requirements possibly revisited (see Fig. 1). While this process has been a reli-
able method for producing architectures, it strongly depends on the architect’s limited
knowledge and experience, who may have experience with only a small number of pat-
terns. Thus, we envision a process where the architect is supported by tools to enhance
her knowledge of the patterns available for particular design problems.

Recently, we designed a framework [8] for supporting software developers and archi-
tects (decision-makers) with their multi-criteria decision-making (MCDM) problems
in software production. An MCDM problem deals with evaluating a set of alterna-
tives and considers a set of decision criteria [15]. In this tool paper, we introduce a
decision model, based on the framework, for the patterns selection problem. The DSS
employed the decision model to support software architects with the pattern selection
problem. Accordingly, we believe that the DSS can be used in steps (1-5) to facilitate
the decision-making process for software architects (see Fig. 1).

The rest of this tool paper is organized as follows. Section 2 outlines a brief descrip-
tion of the DSS components and explains the constituent parts of the decision model.
Section 3 presents the DSS and its application through a real-world example. Section 4
positions the DSS, among other tools and MCDM approaches, in the literature. Finally,
Section 6 presents the evaluation of the DSS and summarizes this tool paper.

A Decision Support System for Pattern-Driven Software Architecture 3

Fig. 1. This figure shows that the DSS can be deployed in the the software architecture design
process to support the software architects with the pattern selection problem [7,17].

Decision Support System

Knowledge Base

ProcessProcess

The Decision Model for Pattern Selection

Software Quality Models

ISO/IEC 25010

Features

Problem

Context

Forces

Solution

Resulting ContextPros/Cons

Examples

Rationale

Related Patterns

Known Uses

Patterns

Client/Server

Layers CQRS

SOA
...

has

1..* 1..*

impacts on

1..*1..*

(Collection of decision models)

Inference Engine

Exclude Infeasible Solutions

Score Calculation

User Interface

 Requirement
(MoSCoW)

Feasible
Patterns

Software Architecture Design Process

Consolidate inputs

Identify scenarios

Identify relevants
architectural patterns

Produce candidate
architecture

Explore architectural
options

Evaluate architecture
with stakeholders

Rework architecture,
revisit requirements

Decision[not acceptable]

[acceptable]

(1)

(2)

(3)

(6)

(7)

(8)

Explore combinations of
architectural patterns

Rework solutions,
revisit requirements

Evaluate potential
alternative solutions

Decision

[not acceptable][acceptable]

(4)

(5)

2 Decision Support System

A DSS is an information system that comprises domain-specific knowledge and de-
cision models to assist decision-makers by offering knowledge about a set of alterna-
tives [20]. In this tool paper, the DSS integrates key aspects of knowledge-driven and
model-driven DSSs [16] to store and organize the extracted knowledge regarding ar-
chitectural patterns systematically facilitate the decision-making process. Note, for the
sake of simplicity, we use patterns to refer “architectural patterns”.
Additionally, we follow the framework [8] for modeling decision problems in software
production as MCDM problems. The framework applies the six-step decision-making
process [15] to build decision models for MCDM problems. The knowledge base of
the DSS is a collection of decision models for different MCDM problems [7,10,11,9].
According to the framework, the decision model for the pattern selection problem con-
tains three sets (including Patterns, Software Quality Models, and Features) besides the
mapping among the elements of these sets (see Fig. 1).
- Patterns: Patterns are the building blocks that, when assembled, can provide complete
solutions for an architect’s problem (see Fig. 1). Patterns have relationships to each
other. For example, patterns can be alternatives to each other, for example, Interpreter,
Rule-Based System, and Virtual Machine [1]; Moreover, some patterns can also be
complementary and combined. For instance, the Client-Server pattern can be combined
with the Broker pattern [12].

4 S. Farshidi and S. Jansen

- Software Quality Models: A set of quality attributes, such as Availability and Secu-
rity, should be defined in the decision model. We employed the ISO/IEC 25010 stan-
dard [13] as a domain-independent quality model. The key rationale behind using this
software quality model is that it is a standardized way of assessing a software product’s
quality. Moreover, it describes how easily and reliably a software product can be used.
- Features: Each pattern has a set of features, for instance, “centralized governance” is
a feature of the “Client-Server”. We identified the following types of features through a
Systematic Literature Review (SLR) [11]. We reviewed 21,373 articles, and finally, 232
high-quality primary studies have been selected for performing the knowledge extrac-
tion process. Note, such feature types can be found in most patterns, even with different
titles. (1: Problem) Descriptions of the problems indicating the intent in applying pat-
terns. (2: Context) The preconditions under which patterns are applicable. (3: Forces)
Descriptions of the allied forces and constraints. (4: Solution) Static structures and dy-
namic behaviors of patterns. (5: Resulting Context) The post-conditions after a pattern
has been applied. (6: Examples) Some sample applications of patterns. (7: Rationale)
An explanation/justification of each pattern as a whole. (8: Related Patterns) The re-
lationships among patterns. (9: Known Uses) Known applications of patterns within
existing systems. (10: Pros/Cons) Pros and cons of employing patterns.
- Mappings: We identified the impacts of 29 patterns on 40 quality attributes based on
a series of expert interviews with twelve senior software architects at different software
producing organizations in the Netherlands [11]. Moreover, The mapping between the
patterns and the features was investigated with the SLR and the experts.
Decision-Makers, such Software architects and developers, prioritize their require-
ments based on the MoSCoW prioritization technique [5], and then they send the re-
quirements through the user interface of the DSS to the inference engine. Figure 3
shows the user interface of the DSS.
Inference engine: The DSS has an inference engine that receives inputs from the user
interface. Next, it excludes all infeasible solutions, those that do not support “Must-
Have” features or those that support “Won’t-Have” features, and then it ranks the fea-
sible solutions based on the number of “Should-Have” and “Could-Have” features that
they support. In other words, requirements with Must-Have or Won’t-Have priorities
act as hard-constraints and requirements with Should-Have and Could-Have priorities
act as soft-constraints. The inference engine assigns a non-negative score to each al-
ternative solution based on the well-known Sum of Weights Method [7], and finally, it
returns a shortlist of feasible patterns (solutions) to the user interface.

3 A Practical Running Example

The DSS is accessible through the following link: (https://dss-mcdm.com). After
login to the system, a software architect should select the “Software Architecture Pattern
Selection” to create an instance of the decision model.
This section presents a real-world example of the pattern selection process. We asked a
software architect at AFAS Software, a software producing organization in the Nether-
lands, to define their software architecture from a high-level of abstraction; then, we

https://dss-mcdm.com

A Decision Support System for Pattern-Driven Software Architecture 5

Fig. 2. The architects describe their case in the context description screen. The tool uses text
matching to automatically extract a subset of features from the description to get the architect
started.

used the DSS and the decision model to capture the architect’s concerns and require-
ments; next, the DSS generated a set of solutions accordingly.
Case Description - The software architect described AFAS software as follows: AFAS
Software is a Dutch vendor of Enterprise Resource Planning (ERP) Software with
more than 500 employees. AFAS has the goal of automating business processes found
in a diverse range of companies. It supports business processes such as invoicing,
project management, payrolling in a single integrated software system. The current
AFAS product, called AFAS Profit, is a traditional client-server application with a
relational database for storing and retrieving customers’ management data, such as
business models and ontologies. AFAS Profit is a complete, integrated ERP system
used by more than 10000 small and medium-sized enterprises. For example, Ernst &
Young, Kwik-Fit, LeasePlan, Oad Reizen, Sandd, and Wibra, are already employing
AFAS Profit to automate their business processes. Fig. 2 shows the description of the
decision-making problem in terms of the case title and description; moreover, the logo
of the company can be attached to the “case description”.
Case Definition - The software architect defined AFAS Profit as a web-based solution
that is consistent with the user experience of the windows client but feels web-native to
customers. AFAS Profit is configurable by customers in their styling to match their logo
and business style. AFAS Profit has the following characteristics: (1) It is a combina-
tion of a client or frontend portion that interacts with the user and a server or back-end
portion that interacts with the shared resource. The client process contains solution-
specific logic and provides the interface between the user and the rest of the application
system. The server process acts as a software engine that manages shared resources.
(2) All data are centralized on a single server, simplifying security checks, including
updates of data and software. (3) It supports a higher degree of flexibility and secu-
rity, compared to the previous solution. (5) Its performance has increased significantly,
compared to the previous solution, as tasks are shared between servers.
The architect stated that “Functional Correctness”, “Resource Utilization”, “Con-
figurability”, “Accessibility”, “Reliability”, “Availability”, and “Scalability” are the
main quality concerns. Additionally, “technology agnostic”, ”modern web applica-
tion”, and ”reusability of the business logic” are the key requirements of AFAS profit.

6 S. Farshidi and S. Jansen

Fig. 3. represents how a decision-maker can define the requirements based on the MoSCoW pri-
oritization technique.

Fig. 3 shows the “case definition” of AFAS Profit. The software architect assigned the
MoSCoW priorities (Must-Have, Should-Have, Could-Have, and Won’t-Have) to the re-
quirements. Note, the data type the features can be either Boolean or Non-Boolean. For
instance, “handling user input” is a Boolean feature, which means that a pattern either
supports it or not. However, the level of support of “Availability” or “Scalability”, as
two Non-Boolean features, of a pattern can be “High”, “Medium”, or “Low”.

Case Evaluation - The software architect stated that AFAS Profit architecture is based
on a combination of the “Client-Server”, “Publish-Subscribe”, and “Layers” patterns.
The main rationales behind these design decisions are (1) the frontend can be easily
replaced or upgraded, and every module of the business logic, in the back-end, can be
reused. (2) The web client communicates over HTTP with the server, so it is possible
to choose different technologies for the web client. (3) They can implement a Content
Management System (CMS) to make the web client configurable in style and layout.
(4) While the data is requested through communication with the server, preventing stale
data, the CMS parts are published with some delay, making it possible to cache the style
and layout for fast retrieval.

The inference engine gets the requirements and evaluates the alternative patterns in its
knowledge base accordingly. As each pattern supports only a limited set of features, the
inference engine has to generate feasible solutions (combinations of patterns). Note,
finding a subset of patterns that support all hard-constraints can be formulated as the set
cover problem. The DSS uses an algorithm based on the set cover problem to generate
several feasible solutions when all patterns in its knowledge base do not support the
entire list of hard-constraints of a decision-maker. For instance, Fig. 4 shows that the

A Decision Support System for Pattern-Driven Software Architecture 7

Fig. 4. illustrates part of the case evaluation by the DSS. Ticks (3) in a row signify that the
feature is supported by the corresponding patterns, and crosses (7) symbolize that the patterns do
not support the feature.

DSS could not find any patterns that address all the AFAS Profit requirements so that it
generated a set of solutions consist of multiple patterns.

Fig. 5. shows top-3 solutions for AFAS Profit.

Patterns tend to be combined to provide greater support for the reusability during the
software design process [19]. A pattern can be blended with, connected to, or included
in another pattern. For instance, the Broker pattern can be connected to the Client-
Server pattern to form the combined Client-Server-Broker pattern [12]. Fig. 5 shows
top-3 solutions for AFAS profit. The solutions support all requirements with Must-
Have priorities and do not support Won’t have requirements (hard-constraints). Note,
the DSS generated almost similar solutions that the experienced software architects at

8 S. Farshidi and S. Jansen

AFAS came up with. Note that the DSS sorts its suggestions based on their scores so
that top-3 solutions can be considered the most valuable suggestions.

Fig. 6. show a subset of the mapping between features and patterns used by the DSS to generate
solutions for AFAS profit. The primary source of knowledge to build this mapping is the SLR.
We employed Fuzzy logic to gain some agreement among the selected studies to calculate the
values [11]. Note: High (H), Medium (M), Low (L), Unknown (?).

The DSS Reports - In the knowledge extraction phase for building the decision model,
we observed multiple inconsistencies regarding the impacts of patterns on quality at-
tributes. Some studies reported adverse impacts of a particular pattern on a quality at-
tribute. For instance, efficiency can be considered as both strength and liability of the
Pipes and Filters pattern. We applied fuzzy logic to aggregate the extracted knowledge
regarding the potential impacts of patterns on quality attributes. In the implementation
of the score calculation (trade-off) phase of the DSS, the impact values range from -2 to
2+. Accordingly, the patterns with more liabilities score lower than those that have more
strengths. Note, quantifying the impact of a particular pattern on the quality attributes
is complicated because quality attributes are system-wide capabilities. Generally, they
cannot be evaluated entirely until the whole system can be evaluated. The DSS evalu-
ates alternative solutions according to decision-makers’ quality concerns. Fig 6 shows
the impacts of the single solutions for AFAS profit on a subset of quality attributes.
Fig. 7 illustrates a decision structure based on AFAS profit requirements. The DSS auto-
matically generates such decision structures according to the requirements of decision-
makers. The first level of the decision structure (Domain) indicates the goal of the
decision-making process. The second level denotes the relevant quality attributes that
impact the prioritized requirements, which are signified in the third level (requirements).
The last level (Feasible Solutions) shows a list of feasible patterns for the decision do-
main.

4 Related Work

In the SLR [11], we reviewed selected 232 high-quality primary studies for performing
the knowledge extraction process. The knowledge base of the SLR, including the pri-

A Decision Support System for Pattern-Driven Software Architecture 9

Fig. 7. shows part of the decision structure for the AFAS profit that was generated by the DSS.
The domain of the decision-making process is ”Finding the best fitting set of patterns for AFAS
profit”. The qualities are based on the ISO/IEC 25010 [13] quality model. The software architect
(decision-maker) defined the feature requirements. The DSS suggested feasible alternative solu-
tions for AFAS profit (last level). Note, the mapping between the qualities and the features was
based on domain experts’ knowledge; moreover, the relationships among features and patterns
were determined based on the SLR [11].

ISO/IEC 25010
Ext. ISO/IEC 9126

Feature Requirements Feasible alternative
solutions for AFAS profit

Domain

mary studies and extracted knowledge, is available as a technical report on the following
web page: http://swapslr.com. We realized that researchers introduced a variety of tools
and MCDM techniques to address the pattern selection problem. Notably, there are few
tools available for software architects. Architecting is a knowledge-intensive practice,
so it can be hard to find the best way to support architects with the right knowledge at
the right time. A subset of tools for supporting software architects with their design de-
cisions are presented as follows: Archium (www.archium.io) is a visualization tool that
produces a view on the functional dependencies between architectural design decisions.
It is not an automatic pattern detection or selection, but visualizing the dependencies
can help software architects identify such patterns. ArchReco (www.cs.ucy.ac.cy/ sielis)
provides a design environment that software architects can draw diagrams with pre-
defined shapes that exist in a palette. The description of the shapes is part of a contextual
element set that ArchReco’s processes suggest the most suitable context-based recom-
mended design patterns. Such Design Patterns are retrieved from several data sources
and filtered according to the contextual information that is processed when software
architects request recommendations.Sirius (www.obeodesigner.com/en/product/sirius)
is a tool that enables software architects to graphically design complex systems while
keeping the corresponding data consistent (architecture, component properties, etc.).
AKB (www.se.jku.at/akb-knowledge-sharing) is an implementation and extension of
the Architecture Haiku concept, a one-page design description. AKB supports software
architects with capturing and sharing of architectural knowledge based on architecture
profiles.
The DSS enables software architects to document their drawings and design rationales.
We implemented a design studio based on the Unified Modeling Language concepts to
store design decisions while the decision-making process. The main difference between
the DSS and such tools is that it supports software architects with their decision-making
process. In other words, the DSS provides a discussion and negotiation platform to en-

10 S. Farshidi and S. Jansen

able software architects to make group decisions. Furthermore, the DSS can be used
over the full life-cycle and can co-evolve its advice based on evolving requirements.
Software architects can prioritize their functional requirements and quality concerns us-
ing the MoSCoW prioritization technique through the user interface of the DSS. Then,
the DSS generates a set of feasible solutions that address the requirements.

5 Evaluation

We carried out a study with 24 software architects and developers in the Netherlands
to assess the user acceptance of the decision support system and the decision model
based on the Technology Acceptance Model. Firstly, we formed 12 groups of two in-
dividuals according to their expertise and the companies that they were working with.
Next, we introduced the decision model within the DSS portal and presented some of its
applications. Then, we assigned the problem definitions of two real-world software ar-
chitectures to the groups and asked them to design two solutions for the problems. The
groups used the decision model within the DSS platform to help them with (1) defining
the requirements based on the MoSCoW prioritization technique, and (2) finding the
best fitting set of patterns. The group sessions lasted between 45 to 60 minutes. At the
end of the sessions, we ask all of the participants to fill out a TAM-based questionnaire;
Next, we collected their feedback and opinion about the decision model. The partic-
ipants highlighted that the decision model, in terms of reusable knowledge regarding
the patterns, was a useful tool that can support them to explore more patterns while
designing real-world software architectures. They asserted that the decision model as-
sists them in finding liabilities and strength of patterns, their features, and potential
application domains that they have employed in.
The DSS assists software architects in the requirements elicitation activity by offering
a list of essential features of patterns. Moreover, software architects have different per-
spectives on their requirements in different phases of the Software Development Life-
Cycle. They might want to consider generic domain features in the early phases of the
life-cycle, whereas they are interested in more technical features as their development
process matures. Therefore, the DSS might come up with various solutions for a soft-
ware architect in different phases of its software development life-cycle. As the choices
of a decision-maker are stored in the DSS knowledge base, it does not cost a significant
amount of time to rerun the decision-making process. In a typical scenario, an architect
will tweak her decisions and values to assess her choices have on the desired set of pat-
terns. Software architects sometimes have to select a particular set of patterns because
of legacy technology choices. Sometimes vendor lock-in makes a customer dependent
on a vendor for products and services, unable to use another vendor without substan-
tial switching costs. An example of a pattern that has been trending in recent years is
the Microservices pattern (see [11]). Microservices advantages can tempt architects to
consider it as a hammer and convert every design decision into a nail.
Patterns and quality attributes are not independent and have significant interaction with
each other. Such interactions can be observed as trade-offs between quality attributes.
Software architects need to select and employ an optimal set of patterns to satisfy qual-
ity concerns. For instance, some studies assert that Reusability is a strength and Scala-

A Decision Support System for Pattern-Driven Software Architecture 11

bility is a liability of the Layers pattern (see [11]). If an architect is looking for both qual-
ities, she has two options: choose another (set of) pattern(s) or use tactics to improve
Scalability. System quality is best exposed in production, independent of whether sys-
tem quality has been made explicit. We recall that well-known authors, such as Wiegers
and Beatty [21], classify quality attributes as external (exposed at the run time/in pro-
duction, e.g., performance) and internal (exposed at design time, e.g., modifiability). If
architects do not think about performance, the system will still expose its performance
in the field. The knowledge around the quality of a system under design is hard to gather
without in the field experiences; however, experience with similar patterns in other sys-
tems provides invaluable insight into the inherent qualities of a new system. The DSS
recommends patterns that exhibit similar quality behaviors when purely implemented
(without tactics) in different systems and that this knowledge can be used by architects
to make informed design decisions. We consider it future work to further explore these
relationships between patterns and the way in which these communicating properties
are best communicated to architects, having to choose from a set of complex solutions.
The tool has been designed using the .Net framework. While it has been optimized
somewhat, the tool will sometimes still perform slowly, with end-user wait times of
around 5 seconds, which is workable, but not ideal. One of the challenges is the solution
space: for recommending solutions (combinations of patterns), the problem’s search
space is huge, consisting of 29 patterns and 188 features. For instance, for a solution
with three patterns, the problem’s search space is found to contain ∼ 29×28×27×188
possible problem states.

6 Conclusion

In this tool paper, we present a DSS besides a decision model for architectural pat-
tern selection. The DSS suggests feasible patterns for particular cases based on the
quality concerns and functional requirements of decision-makers. The DSS3 is acces-
sible through the following link: (https://dss-mcdm.com). We consider it future work
to ensure that the knowledge base remains up to date, for instance, through a wiki-
mechanism. Thus, software architects can consider the DSS as a source of knowledge
and reliable assistance while making decisions regarding the best-fitting set of patterns
for their software architectures. Additionally, we should enhance the DSS with a learn-
ing module that improves its learnability aspect in the future.
It is presently impossible to assess which patterns are compatible and frequently used
in combination, even though practically all systems implement more than one pattern.
The knowledge base of the DSS contains individual patterns that solve particular parts
of a design problem. The inference engine uses an algorithm based on the set cover
problem to generate several feasible solutions when all patterns in its knowledge base
do not support the entire list of hard-constraints of a decision-maker.
In our studies, we have dealt with different kinds of architectures, with a slight bias
towards enterprise resource planning systems. We consider it as future work to apply
the tool to problems in other domains, such as Internet of Things, gaming, or media
systems.

3 Please watch a demo video of the DSS through this link: https://youtu.be/AhfGYpwpJSQ

https://youtu.be/AhfGYpwpJSQ

12 S. Farshidi and S. Jansen

References

1. P. Avgeriou and U. Zdun. Architectural patterns revisited-a pattern language. European
Conference on Pattern Languages of Programs, 2005.

2. J. Bosch. Software architecture: The next step. In European Workshop on Software Archi-
tecture, pages 194–199. Springer, 2004.

3. F. Bushchmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-oriented soft-
ware architecture-a system of patterns. Advances in software engineering and knowledge
engineering, 1:1–487, 1996.

4. P. Clements, R. Kazman, M. Klein, et al. Evaluating software architectures. Tsinghua
University Press Beijing, 2003.

5. DSDM Consortium. The DSDM agile project framework handbook. Ashford, Kent, 2014.
6. A. H. Dutoit, R. McCall, I. Mistrı́k, and B. Paech. Rationale management in software engi-

neering. Springer Science & Business Media, 2007.
7. S. Farshidi, S. Jansen, R. De Jong, and S. Brinkkemper. A decision support system for cloud

service provider selection problems in software producing organizations. In 2018 IEEE 20th
Conference on Business Informatics (CBI), volume 1, pages 139–148. IEEE, 2018.

8. S. Farshidi, S. Jansen, R. de Jong, and S. Brinkkemper. A decision support system for
software technology selection. Journal of Decision Systems, 2018.

9. S. Farshidi, S. Jansen, R. De Jong, and S. Brinkkemper. Multiple criteria decision support in
requirements negotiation. In the 23rd International Conference on Requirements Engineer-
ing: Foundation for Software Quality (REFSQ 2018), volume 2075, pages 100–107, 2018.

10. S. Farshidi, S. Jansen, S. España, and J. Verkleij. Decision support for blockchain platform
selection: Three industry case studies. IEEE Trans. on Engineering Management, 2020.

11. S. Farshidi, S. Jansen, and J. M. van der Werf. Capturing software architecture knowledge
for pattern-driven design. Journal of Systems and Software, 2020.

12. N. B. Harrison and P. Avgeriou. How do architecture patterns and tactics interact? a model
and annotation. Journal of Systems and Software, 83(10):1735–1758, 2010.

13. ISO. IEC25010: 2011 systems and software quality requirements and evaluation (SQuaRE).
International Organization for Standardization, 34:2910, 2011.

14. P. Lago and P. Avgeriou. First workshop on sharing and reusing architectural knowledge.
ACM SIGSOFT Software Engineering Notes, 31(5):32–36, 2006.

15. M. Majumder. Multi criteria decision making. In Impact of urbanization on water shortage
in face of climatic aberrations, pages 35–47. Springer, 2015.

16. D. J. Power. Decision support systems: a historical overview. In Handbook on decision
support systems 1, pages 121–140. Springer, 2008.

17. N. Rozanski and E. Woods. Software systems architecture: working with stakeholders using
viewpoints and perspectives. Addison-Wesley, 2012.

18. A. Tang, P. Liang, and H. Van Vliet. Software architecture documentation: The road ahead.
In the 9th Working IEEE Conference on Software Architecture, pages 252–255. IEEE, 2011.

19. M. T. T. That, S. Sadou, F. Oquendo, and I. Borne. Composition-centered architectural
pattern description language. In European Conference on Software Architecture, pages 1–
16. Springer, 2013.

20. H. Wang. Intelligent agent-assisted decision support systems: integration of knowledge dis-
covery and knowledge analysis. Expert Systems with Applications, 12(3):323–335, 1997.

21. K. Wiegers and J. Beatty. Software requirements. Pearson Education, 2013.
22. O. Zimmermann. Architectural decisions as reusable design assets. IEEE software,

28(1):64–69, 2010.

	A Decision Support System for Pattern-DrivenSoftware Architecture

